
REVIEW

Electrode materials and reaction mechanisms in solid
oxide fuel cells: a brief review
II. Electrochemical behavior vs. materials science aspects

Ekaterina V. Tsipis & Vladislav V. Kharton

Received: 14 April 2008 /Revised: 2 June 2008 /Accepted: 3 June 2008 /Published online: 11 July 2008
# Springer-Verlag 2008

Abstract Following previous surveys of the solid electrolyte
ceramics and electrode reactionmechanisms in solid oxide fuel
cells, this review is focused on the comparative analysis of
electrochemical performance, thermal expansion, oxygen ionic
and electronic transport, and durability-determining factors in
the major groups of electrode materials. The properties of
mixed-conducting oxide phases with perovskite-related and
fluorite structures, ceramic–metal and oxide composites, and
catalytically active additives are briefly discussed, with
emphasis on the approaches and findings reported during the
last 10–15 years. The performance of conventional and al-
ternative electrode materials in the cells with ZrO2-, CeO2-,
LaGaO3-, and La10Si6O27-based electrolytes is appraised in
the context of potential optimization strategies. Particular
attention is centered on the cathode and anode compositions
providing maximum electrochemical activity and stability and
on the critical aspects relevant for electrode microstructure
engineering.
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Introduction

Electrical power generation systems based on solid oxide fuel
cells (SOFCs) provide important advantages with respect to
other energy conversion engines due to high efficiency, fuel

flexibility including the prospects to operate on natural gas
and biogas, environmental safety, and possibility to recover
exhaust heat [1–9]. Significant efforts are, however, still nec-
essary to develop commercially feasible generators, in par-
ticular to increase their long-term stability and to reduce costs.
These problems can be partially solved by decreasing the
SOFC operation temperatures down to 770–1070 K, provided
that a high power density and sufficient durability can be
achieved in this intermediate-temperature (IT) range. Develop-
ments of the IT SOFCs make it possible to use less expensive
construction materials, to suppress degradation caused by the
high operating temperatures and by thermal cycling, to fa-
cilitate miniaturization, and to improve efficiency of the kW-
scale generators [2–5, 8–12]. On the other hand, lowering the
SOFC operation temperature leads also to a greater role of
electrode polarization which may become critical for the
overall performance because the apparent activation energies
for the interfacial processes are, as a rule, higher than those for
oxygen ionic transport in solid electrolytes (e.g., [3–5, 13–
19]). The progress in this field is, hence, inevitably associated
with a continuous search for novel cathode and anode
materials having superior electrocatalytic activity in the
intermediate-temperature range, optimization of the cell
fabrication technologies and electrode microstructures, and
efforts to thoroughly understand the electrochemical reaction
mechanisms. These developments have also a key importance
for other solid-state electrochemical devices, such as electro-
lyzers of carbon dioxide and water vapor, oxygen and hydrogen
pumps, various ceramic reactors, and sensors [1, 4, 18–21].

This brief review is centered on the analysis of electro-
chemical behavior, thermal expansion, stability, and oxygen
ionic and electronic transport properties in the major groups of
SOFC electrode compositions, with primary emphasis on the
relationships between electrochemical performance and mate-
rials science-related factors. Attention is also drawn to surface
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modification of the cell components, degradation phenomena,
and interaction between electrodes and solid electrolytes. In
this paper, no attempt for a complete overview of all pro-
mising materials, relevant phase equilibria, and microstruc-
tural design approaches, or for a deep analysis of microscopic
mechanisms of the electrochemical reactions was made. The
readers interested in these issues are addressed to thorough
reviews and monographs [1–6, 8–11, 16, 17–29]. Taking into
account the data on oxygen ionic conductivity, electrolytic
domain boundaries, and thermodynamic stability of solid elec-
trolyte materials discussed in the first part of this review and in
[1, 4, 18–20, 30], the data on electrode behavior analyzed in
the present work were limited primarily to the electrochemical
cells with ZrO2-, CeO2-, LaGaO3-, and La10Si6O27-based
electrolytes, which can find practical application in SOFCs.
The use of other known electrolytes under the SOFC ope-
ration conditions is still questionable, mainly due to either
poor stability or insufficient ionic transport. Furthermore, the
references included in this article were selected in order to
show typical relationships between properties of different
electrode materials rather than to provide a comprehensive
literature survey; priority has been given to the last 10–
15 years.

Cathode materials

Manganites

Perovskite-type manganites Ln;Að ÞMnO3�d (Ln = La–Yb or
Y; A = Ca, Sr, Ba, Pb) and their derivatives possess a high
electronic conductivity, substantial electrocatalytic activity
towards oxygen reduction at temperatures above 1000–
1100 K, and moderate thermal expansion coefficients (TECs)
compatible with commonly used solid electrolytes, such as
yttria-stabilized zirconia (YSZ) [1–5, 23, 30]. Although the
total conductivity of manganites is lower compared to their
Co- and Ni-containing analogues (Fig. 1), the latter perovs-
kite families exhibit other important disadvantages, including
excessively high TECs and/or limited thermodynamic
stability even under oxidizing conditions. In fact, lantha-
num–strontium manganites (LSM) and composites on their
basis are still considered as state-of-the-art cathode materials
for SOFCs operating at 1070–1270 K [2–9, 26, 31].

Perovskite-like LnMnO3�d phases exist in all ternary
Ln–Mn–O systems, except for Ln = Ce [23, 25]. Ilmenite-
type LnMn2O5 have a considerably lower stability; in air,
these are formed up to approximately 1370 K for Ln = Nd–
Ho, and up to 1270 K for Ln=Er–Lu and Y. The solubility
limits of Ca, Sr, Ba, and Pb in the perovskite lattice of
Ln1�x AxMnO3�d (Ln = La–Gd) correspond to the x values
varying from 0.4 to 0.7 [23, 25, 32–34]. In the systems with
small Ln3+ cations such as Yb3+ and Y3+, the solubility of

Sr2+ also achieves at least 40% [25, 35]. At atmospheric
oxygen pressure, p(O2), Ce1�xSrxMnO3�d with tetragonal
perovskite structure are formed in the range x=0.7–0.9 [36].
When the content of alkaline-earth dopants in Ln1�x AxMnO3�d

is modest (<20%), minor Ln-site cation deficiency increases
thermodynamic stability, while rare-earth oxides may segre-
gate in the nominally cation-stoichiometric compositions [25,
37, 38]. Most of K2NiF4-type Ln;Að Þ2MnO4�d exist at mo-
derately lower oxygen pressures with respect to atmospheric,
except for the compounds with comparable Ln3+ and A2+

concentrations which may be obtained in air [23, 25, 39].
All perovskite-related manganites exhibit a predominant

electronic conduction in combination with low oxygen ion
diffusivity; their transport properties and electrochemical
activity are strongly dependent on the oxygen non-
stoichiometry. In particular, the electrocatalytic behavior
under high cathodic polarization is usually correlated with
oxygen vacancy generation at the electrode surface [26, 29,
40, 41]. At atmospheric p(O2) and temperatures below
1273 K, La1�xSrxMnO3�d phases are oxygen-hyperstoi-
chiometric at x≤0.2 and become deficient on further doping
[25, 42]. The electrical conductivity (σ) of Ln1�xAxMnO3�d

at moderate A2+ concentrations increases with x as Mn4+

fraction increases; typical trends are illustrated by Figs. 2b
and 3b. The conductivity maximum lies in the range x=0.2–
0.5 and shifts towards lower dopant content on heating. In
the case of Ln0:7Sr0:3MnO3�d (Ln = La–Gd) series, the
highest conductivity was reported for Nd0:7Sr0:3MnO3�d

above 760 K and for Pr0:7Sr0:3MnO3�d at lower temper-
atures [43]. A summary on the average TECs of manganite
ceramics is presented in Table 1. Decreasing rare-earth cation
radii in Ln1�xAxMnO3�d at fixed A2+ concentration sup-
presses the lattice expansion on heating. The dopant contents
corresponding to an optimum thermomechanical compatibil-
ity with zirconia solid electrolytes increase from x=0.10–
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Fig. 1 Comparison of the total conductivity of various perovskite-
related materials in air [37, 107, 109, 136, 154, 188, 369]
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0.15 (Ln = La) up to x=0.3–0.5 for Gd-containing materials
[43].

Acceptor-type doping leads to a substantial improvement
in the performance of porous Ln1�xAxMnO3�d cathodes
(Figs. 2, 3 and 4). The maximum of electrochemical activity
at 1073–1273 K observed in the range x=0.3–0.7 tends to
shift towards lower dopant concentrations when temperature
increases and is close enough to the conductivity maximum.
Introducing Ln-site cation deficiency increases the manga-
nite electrode performance due to a suppressed reactivity
with zirconia electrolytes, higher oxygen vacancy content
and, often, faster ionic conduction [25, 37, 38, 44, 45]. In
addition, this compositional variable makes it possible to
optimize thermal expansion (Table 1). The common cathode
compositions are based on La1�xSrxð Þ1�yMnO3�d with x=
0.10–0.30 and y=0.05–0.12, although in many cases the
electrochemical activity of PrMnO3-based materials is high-
er (Fig. 4). The superior properties of praseodymium-
containing solid solutions, such as Pr0:6Sr0:4MnO3�d [35]

and Pr0:7Ca0:3MnO3�d [46], may be associated with a non-
negligible contribution of Pr3+/4+ redox couple at the
electrode surface and with a less pronounced interaction
with zirconia during cell processing and operation. The
latter factor has a critical importance for most Ln1−x
AxMnO3±δ cathodes [1, 13, 25, 26, 32, 34, 47–50], since
the resultant formation of AZrO3-based perovskite and
Ln2Zr2O7 pyrochlore layers increases ohmic losses owing
to very low conductivity of the reaction products and leads
to a high polarization due to blocking of oxygen transfer.
For Ln = La–Gd, the reactivity with YSZ to form Ln2Zr2O7

becomes lower on decreasing Ln3+ radius [35, 43, 47, 51];
this originates from decreasing thermodynamic stability of
the pyrochlore zirconates compared to their fluorite-like
polymorphs. At the same time, reducing the Ln3+ size and
perovskite tolerance factor decreases also stability of the
manganite solid solutions [52], which may facilitate the cell
materials interaction. This complex behavior in combination
with various microstructure-related effects leads often to
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contradictions in the literature data, particularly on the role
of A2+ cation radii [25, 33–35, 43]. In contrast, the positive
impact of minor Ln-site cation deficiency inhibiting top-
otactic reaction was unambiguously established by numer-
ous groups [38, 53–56]. Under the SOFC operating
conditions, the zirconate formation can be partly suppressed
due to a reduced oxygen activity at the cathode, favorable
for dissociation and re-dissolution of the blocking layers
[38, 56]. Notice however that reducing p(O2) may also
cause Sr enrichment of the LSM surface [57].

An optimization of thermal expansion, improvement of
the interfacial stability and, often, an increase in the oxygen
permeability and electrode performance can be achieved by
the partial substitution of manganese with other transition-
metal cations and/or ions having a stable oxidation state
(e.g., [23, 25, 32, 52, 58–60] and references cited). As a
general rule, moderate additions of the variable-valence
dopants decrease polarization resistance Rh

� �
of the cat-

hodes made of Ln; Srð Þ Mn;Mð ÞO3�d (M = Co, Ni) perovs-
kites; the use of cations with constant oxidation state enables
to optimize thermal and chemical expansion and, thus, to im-
prove microstructural stability. The effects of Mn-site substi-
tution on the interaction with solid electrolyte materials
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Table 1 Average linear TECs of manganite ceramics in air [32, 35,
43–46, 90, 306, 362–364]

Composition T, K a � 106, K−1

La0.99MnO3 300–1370 11.2
La0.94Sr0.05MnO3 300–1370 11.7
La0.89Sr0.10MnO3 300–1370 12.0
La0.79Sr0.20MnO3 300–1370 12.4

300–1270 11.1
La0.69Sr0.30MnO3 300–1370 12.8
La0.65Sr0.30MnO3 300–1270 12.3
La0.69Sr0.30MnO3 300–1270 12.0
La0.50Sr0.40MnO3 300–1100 11.3
La0.50Sr0.30MnO3 300–1100 12.3
La0.30Sr0.50MnO3

a 300–1100 11.9
LaMnO3 320–580 7.7

580–1100 11.8
La0.90Sr0.10MnO3 300–1270 9.9
La0.80Sr0.20MnO3 300–1270 11.2

340–540 7.7
La0.70Sr0.30MnO3 300–1270 11.7
La0.60Sr0.40MnO3 570–1270 13.0

320–1100 11.7
300–1100 11.3
300–1270 12.0

La0.50Sr0.50MnO3 300–1100 12.1
300–1270 12.2
320–1100 12.3

La0.80Ca0.20MnO3 320–520 6.3
550–1050 10.6

La0.60Ca0.40MnO3 350–1050 9.3
La0.50Ca0.50MnO3 350–1050 10.7
La0.60Pb0.40MnO3 550–1100 9.2
La0.50Pb0.50MnO3 300–1100 10.4
Pr0.80Sr0.20MnO3 300–1270 9.6

300–1270 10.1
Pr0.75Sr0.25MnO3 300–1170 10.2
Pr0.70Sr0.30MnO3 300–1270 10.6

300–1070 11.1
Pr0.65Sr0.30MnO3 300–1270 11.6
Pr0.60Sr0.40MnO3 570–1270 12.0

300–1270 11.6
Pr0.50Sr0.50MnO3 300–1270 12.2
Pr0.70Ca0.30MnO3 570–1270 11.9
Nd0.80Sr0.20MnO3 300–1270 9.6
Nd0.75Sr0.25MnO3 300–1170 10.7
Nd0.70Sr0.30MnO3 300–1270 10.3

300–1070 11.1
Nd0.65Sr0.30MnO3 300–1270 9.7
Nd0.60Sr0.40MnO3 300–1270 11.2
Nd0.50Sr0.50MnO3 300–1270 12.1
Nd0.50Ca0.50MnO3 500–1200 11.3
Sm0.70Sr0.30MnO3 300–1270 9.9
Sm0.60Sr0.40MnO3 300–1270 10.4
Sm0.50Sr0.50MnO3 300–1270 11.4
Gd0.80Sr0.20MnO3 300–1270 3.8
Gd0.70Sr0.30MnO3 300–1270 9.5
Gd0.65Sr0.30MnO3 300–1270 9.9
Gd0.60Sr0.40MnO3 300–1270 10.2

Table 1 (continued)

Composition T, K a � 106, K−1

Gd0.50Sr0.50MnO3 300–1270 10.9
Gd0.50Ca0.50MnO3 300–1070 10.0
Yb0.50Ca0.50MnO3 300–1100 10.2
Y0.50Ca0.50MnO3 450–670 3.0

670–1100 9.1

aManganese oxide phase impurities
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depend on numerous factors, including the thermodynamic
stability of perovskite solid solutions and dopant diffusivity in
the electrolyte, as briefly discussed below. Several examples
illustrating the performance of doped manganite cathodes are
presented in Fig. 5. In most known cases, no direct cor-
relations between the oxygen ionic conductivity (σo) in the
mixed-conducting electrode materials and electrochemical
behavior of the porous cathodes can be unambiguously
identified when the dopant content is moderate. These cor-
relations become quite obvious in the composite layers con-
taining a second ionically conducting phase, such as stabilized
zirconia or doped ceria [61–66]. A highest electrochemical
activity is demonstrated by functionally graded cathodes,
where the ionic conductor (IC) volume fraction near the
electrode–electrolyte interface is substantial and the nano-
sized manganite particles are distributed at the IC surface,
thus providing a maximum electrochemical reaction zone.
Nonetheless, the overall performance typical for porous
manganite-based layers in the IT SOFCs with ceria and
lanthanum gallate electrolytes is usually lower compared to
ferrite- and cobaltite-based electrodes [14, 26, 67].

Ferrites

The number of iron-containing oxide phases, which are stable
under the SOFC cathodic conditions and exhibit a significant
electronic or mixed conductivity, is larger than that in the
manganite systems. These primarily include perovskite-like
Ln;Að ÞFeO3�d and their derivatives existing in all Ln–A–Fe–
O systems, A2Fe2O5�d brownmillerites, Ln;Að Þ3Fe5O12�d

garnets in the systems with relatively small Ln3+ cations,
Ruddlesden–Popper series (Ln,A)n+1FenOz, and a variety of
other intergrowth compounds such as Sr4Fe6O13�d ([21, 23,
25, 68–81] and references cited). However, due to structural
constraints and defect chemistry features limiting electronic

transport, in most cases an extensive iron substitution is
necessary to achieve the total conductivity values higher than
10–30 S/cm at temperatures above 700 K. For undoped
ferrites, the maximum conductivity under cathodic conditions
is characteristic of perovskite-related solid solutions, such as
Ln1�xSrxFeO3�d systems where the highest level of elec-
tronic and ionic transport is known for Ln = La and x≈0.5
[78–81]. While moderate additions of the acceptor-type
cations enhance the concentrations of mobile oxygen vacan-
cies and p-type electronic charge carriers in Ln;Að Þ FeO3�d,
increasing A2+ content above 50% and decreasing average
cation radius in the Ln3+ sites promote vacancy-ordering and
hole localization processes with a negative influence on the
transport properties. In the Ruddlesden–Popper series, the
partial electronic and ionic conductivities tend to decrease
when the concentration of rock salt-type (Ln,A)2O2 layers
increases; the general trends observed on acceptor doping are
similar to those in the perovskite systems (e.g., [39, 76, 77,
82]). The maximum total conductivity in La2�xSrxFeO4�d

phases with K2NiF4-type structure, 10–25 S/cm at 670–
1270 K, corresponds to x=1.2–1.3 [82].

If compared to manganite electrode materials, one impor-
tant disadvantage of perovskite-related ferrites relates to a
high chemical expansion, which provides critical contribution
to the apparent TECs due to oxygen losses at elevated tem-
peratures and may lead to thermomechanical incompatibility
with common solid electrolytes [75, 83–86]. The expansion
can be partly suppressed by the partial substitution of iron
with cations having a more stable oxidation state, thus re-
ducing oxygen non-stoichiometry variations; the dopant
examples include Ga, Al, Ti, and Cr [75, 86–89]. However,
this type of doping decreases electronic and, often, ionic
transport. The incorporation of nickel increases the conduc-
tivity [85, 90–92]; thermal expansion of La(Fe,Ni)O3-based
perovskites remains moderate at temperatures up to 1100–
1300 K, but rises on further heating, making it necessary to
carefully optimize the electrode sintering protocols. The
layered ferrite phases, particularly Ruddlesden–Popper series
and brownmillerites, display modest stoichiometry changes
and better thermomechanical properties compared to the
perovskites, although their compatibility with electrolyte
ceramics is still limited [39, 76, 77, 82, 93, 94].

The rate of La2Zr2O7 formation due to the reaction of
LaFeO3�d and YSZ at 1673 K was reported to be much lower
in comparison with lanthanum manganite, and can be further
reduced by Al3+ incorporation [58]. On the contrary, the min-
imum reactivity between La0:6A0:4ð Þ1�x Fe0:8M0:2O3�d (A =
Sr, Ca; M = Cr, Mn, Co, Ni) and YSZ at 1273 K was found
for Mn doping, which promotes however the cubic to mono-
clinic phase transition of zirconia on long-term testing [95, 96].
As for manganites, minor A-site cation deficiency improves
the stability of ferrite-based perovskites in contact with YSZ;
opposite effects are observed on Ba2+ incorporation and on
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decreasing Ln3+ cation radius [95–97]. In addition to Ln2
Zr2O7 pyrochlore and AZrO3 perovskite-like phases, the in-
teraction with zirconia leads usually to the segregation of
Fe2O3 or spinels, such as CoFe2O4 [96–99]. The equilibrium
phase relationships and interaction mechanisms in the systems
comprising Ln;Að ÞFeO3�d and CeO2- or LaGaO3-based solid
electrolytes differ significantly from those for stabilized ZrO2

[87, 100–105]. The pseudobinary Ln;Að Þ Fe;Mð ÞO3�d �
La;Að Þ Ga;Mgð ÞO3�d systems are all characterized with large
solid solution domains, facilitating cation interdiffusion be-
tween the phases. In the case of ceria, the interaction occurs
primarily via Ln3+ dissolution in the fluorite-type Ce Lnð ÞO2�d

and grain-boundary diffusion of transition metal cations, such
as iron. Consequently, the rate of materials interaction and its
negative impact on the electrochemical properties is minimum
in the fuel cells with CeO2-based components; the introduc-
tion of doped ceria buffer layers between oxide cathodes and
either zirconia or La1�vSrvGa1�wMgwO3�d (LSGM) electro-
lytes enables to considerably improve the SOFC performance
[99, 106].

Reducing the SOFC operating temperature results in a
lower oxygen vacancy concentration and, hence, in a greater
role of the electrode material ionic conductivity. The oxygen
diffusivity is strongly influenced by the content of lower-
valence cations, which should be increased up to possible
maximum; however, extensive acceptor doping is usually
accompanied with increasing thermal and chemical expansion
due to weakening of the metal–oxygen bonds and rising the
atomic vibration unharmonicity [86, 107, 108]. One attractive
example refers to the well-known La1�xSrxFe1�yCoy O3�d

(LSFC) system where moderate dopant additions provide a
significant enhancement in the total conductivity and elec-
trochemical activity, but also increase apparent TECs (Table 2
and Fig. 6). On the creation of La-site cation vacancies in
LSFC, the conductivity and thermal expansion both decrease
owing to dominant charge-compensation mechanism via the
oxygen vacancy formation [109]; this limits the hole con-
centration and oxygen non-stoichiometry variations on heat-
ing. Similar effects on the electronic transport and TECs are
observed in Ln0:8Sr0:2 Fe0:8Co0:2O3�d (Ln = La–Gd) when
the Ln3+ size becomes smaller; the latter is also associated
with lowering thermodynamic stability and narrowing the
perovskite solid-solution domains [110]. An optimum com-
bination of thermomechanical, transport and electrochemical
properties in LSFC is characteristic for the compositions
with x=0.2–0.5 and y≈0.2, considered as promising
cathode materials for the IT SOFCs with ceria-based
electrolytes. As an example, the cathodic overpotentials
of porous La0:6Sr0:4Fe0:8Co0:2 O3�d layers in contact with
Ce0:8Sm0:2O2�d are 10–40 times lower than those of
La0:82Sr0:18Fe0:8MnO3�djYSZ at 973–1173 K [111]; this
difference increases on reducing temperature. The polari-
zation resistance of La0:6Sr0:4Fe0:8Co0:2 O3�d double-layer

cathode comprising one thick porous layer and a thin dense
film, applied onto 10 or 20 mol% gadolinia-doped ceria
(CGO), was reported to be as low as 0.5 Ω cm2 at 793 K
[112].

Cobaltites

In comparison with the ferrite-based materials, perovskite-
related cobaltites possess considerably better cathodic and
transport properties, but also a higher thermal and chemical
expansion [21, 25, 26, 39, 107, 113–125]. The latter feature
illustrated by Table 2 limits the compatibility with solid oxide
electrolytes, mainly to derivatives of δ-Bi2O3, Bi2VO5:5�d,
and La2Mo2O9�d. As for the manganite and ferrite electrodes,
the primary attention for potential electrochemical applications
is drawn to perovskite-type Ln; Srð ÞCoO3�d and solid
solutions on their base. At the same time, substantially lower
TECs, relatively high mixed conductivity and fast exchange
kinetics results in a significant interest to the layered cobaltites
where the state of Co cations is often more stable with respect
to disordered perovskite analogues; important compositional
families are LnBaCo2O5þd (Ln = Pr, Gd–Ho, Y),
LnBaCo4O7þd (Ln = Dy–Yb, Y), and also Ruddlesden–
Popper type (Ln,A)4Co3O10 and Ln;Að Þ2 CoO4�d (Ln = La–
Nd) existing at moderately reduced oxygen pressures ([25,
115, 126–135] and references therein). The information on
long-term performance of such materials under the SOFC
cathodic conditions is, however, scarce.

Perovskite-like Ln;Að ÞCoO3�d exhibit a greater hole
delocalization and mobility with respect to their Mn- and
Fe-containing analogues (Table 2, Figs. 1 and 7). At 800–
1300 K, the maximum total conductivity in Ln1�xAx

CoO3�d, predominantly p-type electronic, is observed for
Ln = La–Sm, A = Sr, and x=0.25–0.50, shifting towards
lower x on heating [25, 115, 136–140]. Introducing Ln-site
vacancies leads often to decreasing ionic and electronic tran-
sport, although the effects of cation deficiency are governed
by particular charge-compensation mechanisms dependent
on the Ln/A ratio, temperature, and oxygen pressure; more-
over, the corresponding electrical and structural data may be
influenced by synthesis conditions, pre-history, and micro-
structure because the cobaltite perovskites have a lower
thermodynamic stability and are less tolerant to the cation
non-stoichiometry in comparison with manganites and
ferrites [25, 125, 141, 142]. For La2�xSrxCoO4�d (x=0.7–
1.0), the total conductivity above 870 K in air becomes
comparable to that of K2NiF4-type nickelates, 80–100 S/cm
[39]. The highest level of oxygen ionic transport in
Ln1�xAxCoO3�d corresponds to x=0.65–0.70 and Ln = La
[21, 137]. This level is not exceptional, but lies close to
maximum known for the oxide mixed conductors where
higher oxygen permeability was only reported for Bi2O3-
containing materials and for perovskite-type phases derived
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from A Co; Feð ÞO3�d (A = Sr, Ba). The roles of A2+ cation
size and its matching to Ln3+ radius are still disputed. In
addition to experimental limitations associated with the
partial conductivity measurements when the ion transference

numbers are as low as 10−7–10−5, the disagreements in
literature data may partly result from local vacancy ordering
in the oxygen sublattice, cation demixing under non-
equilibrium conditions, and phase separation in the intermediate-

Table 2 Selected data on the total conductivity and thermal expansion coefficients of La1−xSrxFe1−yCoyO3−δ ceramics in air

x Y Total conductivity, S/cm Average TECs Ref.

873 K 1073 K T, K a � 106, K−1

0 0.2 0.8 4.5 373–773 13.1 [365]
873–1173 17.5 [365]

0.1 0.2 44 59 573–1173 16.0 [365]
0.1 1.0 1.27×103 1.21×103 [136]
0.2 0 93 93 573–1173 12.6 [366]

1.09×102 [154]
0.2 0.1 1.16×102 1.23×102 473–1173 14.5 [366]
0.2 0.2 1.75×102 1.91×102 373–1073 15.4 [365]

1.27×102 1.49×102 373–1073 15.4 [366]
77 87 303–1273 14.8 [136]
1.76×102 1.64×102 973 12.5 [110]

0.2 0.3 1.87×102 2.24×102 373–1173 16.5 [366]
0.2 0.4 3.39×102 2.87×102 373–1173 17.6 [366]
0.2 0.5 2.87×102 3.25×102 373–1173 18.7 [366]
0.2 0.6 4.14×102 4.55×102 373–1173 20.0 [366]
0.2 0.7 7.43×102 7.76×102 373–1173 20.3 [366]
0.2 0.8 1.05×103 9.95×102 373–1173 20.7 [366]

470–1070 15.4 [90]
0.2 0.9 1.14×103 1.07×103 373–1173 20.1 [366]
0.2 1.0 1.37×103 1.24×103 373–1173 19.7 [366]

1.69×103 1.52×103 303–1273 18.5 [136]
0.3 0.2 2.40×102 2.05×102 373–973 14.6 [365]

1.59×102 1.59×102 303–1273 16.0 [136]
0.3 1.0 1.97×103 1.68×103 303–1273 19.2 [136]

303–1073 17.5 [306]
303–1273 19.2 [306]

0.4 0.2 3.35×102 2.79×102 373–873 15.3 [365]
2.75×102 3.33×102 303–1273 17.5 [136]
4.60×102 3.30×102 973 15.3 [109]

1273 19.9 [109]
0.4 1.0 2.03×103 1.60×103 303–1273 20.5 [136]
0.5 1.0 1.90×103 1.36×103 303–1273 22.3 [136]
0.6 0.2 373–673 16.8 [365]
0.6 0.8 373–1273 21.2 [113]
0.6 1.0 1.81×103 1.16×103 303–1273 25.1 [136]
0.7 0 61 44 303–1273 25.6 [136]
0.7 0.1 90 61 303–1273 24.8 [136]
0.7 0.2 51 46 303–1273 27.1 [136]
0.7 0.3 63 54 303–1273 27.1 [136]
0.7 0.4 95 83 303–1273 23.9 [136]
0.7 0.5 1.32×102 93 303–1273 23.5 [136]
0.7 0.6 1.73×102 1.29×102 303–1273 24.1 [136]
0.7 0.7 2.86×102 2.17×102 303–1273 24.7 [136]
0.7 0.8 4.80×102 3.88×102 303–1273 21.0 [136]
0.7 0.9 1.37×103 8.37×102 303–1273 19.2 [136]
0.7 1.0 1.47×103 9.12×102 303–1273 [136]

303–1273 25.0 [367]
0.8 1.0 8.10×102 5.78×102 303–1273 25.6 [136]
0.9 1.0 3.35×102 1.91×102 303–1273 26.0 [136]
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temperature range [21, 143–146]. Analogously to ferrite-based
systems, the latter phenomena are all affected by the cobaltites
thermodynamic properties correlating with the tolerance fac-
tors and A-site cation radii, but also by the materials micro-
structure. As a consequence, while the positive impact of Ba2+

doping on the oxygen reduction kinetics was established by
numerous researchers [131, 138, 147, 148], data on the ionic
transport in Ba; Srð Þ Co; Feð ÞO3�d perovskites are quite con-
tradictory (e.g., [149–152]). On the other hand, extensive Ba2+

substitution for Sr2+ in the IT SOFC electrode materials is
very unlikely due to fast interaction with CO2 and water vapor
present in air [153].

The interaction mechanisms between the cobaltite-based
cathodes and solid electrolytes are, in general, similar to those
in Fe- and Mn-containing electrodes, whereas the cation
interdiffusion and topotactic reaction rates are often enhanced
owing to lower thermodynamic stability of the cobaltite
phases [25, 55, 98, 106, 113, 122, 154–159]. In particular,
the cobaltite electrodes may easily react with zirconia
compared to LSM; no blocking layers are formed in the
electrochemical cells with CeO2- or LaGaO3-based solid
electrolytes, but progressive Co diffusion may have a dete-
riorating influence on the SOFC performance. These effects
make it necessary to decrease the cell fabrication temperature
and to use sintering aids, as for the majority of other oxide
electrode materials.

Typical examples illustrating the superior performance of
porous cobaltite cathodes in contact with various solid elec-
trolytes are presented in Figs. 7 and 8a and in Table 3. The
high electrochemical activity may be of great interest for
practical applications, provided that matching of thermal
expansion can be achieved via the development of electro-
lyte-containing composites. The latter approach is, indeed,
used successfully for the model cells (e.g., [160, 161]), al-

though moderate solid electrolyte additions comparable to
the percolation threshold are hardly expected to decrease the
average TECs down to any acceptable level. Another neces-
sary comment relates to the absence of direct correlations
between the bulk transport properties and electrocatalytic
behavior of cobalt-containing electrodes, which are often
visible if comparing different groups of the electrode materials
[25, 90, 162]. For instance, the maximum power density in
LSGM-based SOFCs with La; Srð ÞMO3�d cathodes at
1273 K increased in the sequence M = Cr < Mn < Fe <
Co [120, 163]; similar trends are known for the electronic
conductivity, oxygen ion diffusivity, and anion deficiency
[25, 164, 165]. On the contrary, lowest polarization resis-
tance in (Ln,Sr)CoO3-based series was repeatedly found for
the compositions where Ln3+ cation radius is smaller than
that of La3+, including Sm, Nd, or Pr [147, 148, 162, 163,
166, 167]. For Y0:8Ca0:2Co1�xFexO3�d perovskites stable in
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air at x=0.1–0.7, the electrochemical activity is low, com-
parable to manganite electrodes [118]; a poor performance
was also reported for Y0:9Co0:5Mn0:5O3�d [123]. The ob-
served tendencies show that, in addition to the species oc-
cupying cobalt and oxygen sublattices, the cathodic kinetics
is significantly influenced by specific electrocatalytic prop-
erties of lanthanide cations or surface clusters comprising
Ln3+. These conclusions are in agreement with numerous
experimental and theoretical results demonstrating that the
performance of cobaltite and ferrite electrodes is essentially
governed by the exchange processes at the electrode and
electrolyte surfaces and by ion transfer across the cathode/
electrolyte interface [21, 26, 111, 124, 131, 147, 162, 168–
171]; the role of bulk ionic transport in the electrode material
crystal lattice seems important, but less critical with respect
to these steps. Due to the very high electronic conductivity,
the hole transport may not be rate limiting and exhibit no
correlations with the electrochemical behavior (Fig. 7).

Nickelates and cuprates

The thermodynamic stability of transition metal-containing
perovskites, LnMO3, and the average oxidation state of
M-site cations under cathodic conditions increases as Cu <
Ni < Co < Fe <Mn [21, 23, 25, 39, 115, 172, 173]. At oxygen
pressures close to atmospheric, LaNiO3�d is only stable
below 1130–1250 K; heating leads to its decomposition into
K2NiF4-type La2NiO4þd and NiO via the separation of
La4Ni3O10�d and La3Ni2O7�d phases at intermediate stages
[23, 25, 174–176]. As for LaNiO3�d, the latter Ruddlesden–
Popper compounds display attractive electrochemical and
transport properties, but suffer from insufficient phase sta-
bility in the range of temperatures and oxygen chemical
potentials necessary for the SOFC applications [23, 25, 175–
180]. Decreasing the Ln3+ cation radius and acceptor-type
doping both cause further decreases in the thermodynamic
stability. The decomposition limits can be shifted towards

Table 3 Examples of the
maximum power density in H2-
fueled SOFCs with cobaltite
cathodes

a La0.8Sr0.2Ga0.8Mg0.115
Co0.05O3

Cathode Solid electrolyte/
thickness (mm)

Anode T, K Maximum power
density, W/cm2

Ref.

La0.9Sr0.1CoO3 YSZ/0.5 Ni 1273 0.39 [163]
1073 0.05

La0.9Sr0.1CoO3 LSGM/0.5 Ni 1273 0.93 [163]
1073 0.38 [120]

La0.6Sr0.4CoO3 LSGM/0.5 Ni 1273 0.71 [163]
1073 0.21

La0.6Sr0.4CoO3 LSGM/0.5 Co 1273 0.53 [163]
La0.2Sr0.8CoO3 LSGM/0.5 Ni 1073 0.44 [138]
La0.2Ca0.8CoO3 LSGM/0.5 Ni 1073 0.46 [138]
La0.4Ba0.6CoO3 LSGMCa/0.4 Ni 873 0.12 [138]
La0.2Ba0.8CoO3 LSGM/0.5 Ni 1073 0.52 [138]
Sm0.6Sr0.4CoO3 LSGM/0.5 Ni 1073 0.44 [163]
Sm0.5Sr0.5CoO3 LSGM/0.5 Ni 1073 0.53 [147]

873 0.08 [120]
Sm0.5Sr0.5CoO3 CGO/0.03 Ni–CGO 873 0.27 [121]
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higher temperatures and lower p(O2) by extensive substitu-
tion in the Ni sublattice. In particular, La Ni;Mð ÞO3�d (M =
Ti−Co, Ga) containing 50–60% Ni cations retain perovskite
structure at elevated temperatures [25, 115, 174, 181–187],
while the ionic and electronic conductivities tend to decrease
on doping. Consequently, despite potential thermomechan-
ical problems during sintering as mentioned above, perov-
skite-type LaNi1�xFexO3�d (x=0.5–0.6) are considered as an
interesting group of the IT SOFC cathode materials [85, 90–
92, 174, 182].

In ternary Ln–M–O (Ln = La, Pr, Nd;M =Ni, Cu) systems,
the K2NiF4-type compounds are most stable in oxidizing and
moderately reducing atmospheres [23, 25, 175, 176]. The
solid solution formation domains in La2�xAxNi1�yMyO4�d

series at atmospheric oxygen pressure correspond to x=0−
1.4 for A = Sr; x≤1.0 for A = Ba; x≤0.5 for A = Ca; y≤0.1
and 0.2 for M = Fe and Co at x=0, respectively; and y=0−
1.0 for M = Cu at x=0 [23, 25, 39, 188–190]. The total
conductivity of K2NiF4-type nickelates remains predomi-
nantly p-type electronic in the entire p(O2) range where these
phases exist; the hole transport is lower than that in the pe-
rovskite analogues, but still sufficient for practical applica-
tions. Moderate A2+ doping leads to a higher conductivity
and lower oxygen content, with a negative impact on the
oxygen diffusivity which is substantially determined by the
interstitial anion migration [189, 191–193]. On the other
hand, although the substitution of nickel with higher-valence
cations rises interstitials concentration, an increase in the ionic
transport is only observed at temperatures above 1100 K [192,
193]. The maximum ionic conduction in Ln2NiO4-based
systems is thus characteristic of the compositions with
modest dopant content, particularly for the parent nickelate
phases. The corresponding σo values are 4–10 times lower if
compared to highly oxygen-deficient SrCo Feð ÞO3�d and
Sr Lað ÞCoO3�d perovskites, but are quite similar to those in
La; Srð ÞFeO3�d [80, 188, 191–195]. In combination with
relatively low TECs (Table 4), this feature may provide
serious advantages. One should also mention that doping
with copper considerably improves sinterability [188, 196],
enabling to reduce the electrode fabrication temperature and
to minimize interaction with solid electrolytes.

Figures 8 and 9 present selected data on the electrochem-
ical behavior of several nickelate-based electrodes. A
relatively low polarization resistance at 773–1073 K was
observed for porous Ln2NiO4þd (Ln = La, Nd, Pr) layers
deposited onto YSZ, with a minimum for praseodymium
nickelate [194]. Note that high performance of the latter
composition may be significantly contributed by the meta-
stability of Pr2NiO4þd, which decomposes at temperatures
below 1150–1200 K into electrocatalytically active PrOx and
Pr4Ni3O10�d having higher ionic and electronic conductiv-
ities [180]. For instance, the electrochemical activity of
LaNi0:5Fe0:5O3�d [90] and La2Ni0:8Cu0:2O4þd [196] cath-

odes can be enhanced by surface modification with pra-
seodymium oxide, confirming the role of oxygen surface
exchange as a rate-determining factor [196, 197]. Ageing
tests of Ln2NiO4þd electrodes under DC conditions showed a
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Table 4 Average TECs of selected Ni- and Cu-containing materials in
air

Composition T, K a � 106, K−1
Ref.

La2NiO4 290–1170 13.7 [191]
La2NiO4 300–1270 13.0 [188]
La2NiO4 370–720 13.7 [195]

920–1220 14.4
La1.7Sr0.3NiO4 300–1270 11.3 [39]
La1.6Sr0.4NiO4 300–1270 13.2 [39]
La1.4Sr0.6NiO4 300–1270 11.0 [39]
La2Ni0.98Fe0.02O4 300–1100 13.2 [192]
La2Ni0.90Fe0.10O4 370–1120 13.8 [195]
LaPrNi0.90Fe0.10O4 300–1100 13.4 [192]
La1.9Sr0.1Ni0.90Fe0.10O4 300–1100 12.7 [192]
La2Ni0.50Cu0.50O4 290–1270 12.8 [188]
La2CuO4 290–520 8.6 [188]

520–1170 13.8
Pr2CuO4 300–1070 10.2 [192]
Nd2CuO4 300–1050 10.1 [192]
La2Cu0.98Co0.02O4 300–460 7.1 [192]

470–1050 12.2
La2Cu0.90Co0.10O4 300–1080 13.2 [192]
LaNi0.7Fe0.3O3 300–1270 12.1 [173]
LaNi0.5Fe0.5O3 300–1270 10.9 [173]
LaNi0.5Fe0.5O3 300–1100 11.9 [90]
LaNi0.6Co0.4O3 300–1270 15.0 [173]
LaNi0.6Mn0.4O3 300–1270 10.8 [173]
La0.6Sr0.4Ni0.5Mn0.5O3 300–1100 12.1 [181]
La0.6Sr0.4Ni0.3Mn0.7O3 350–1100 12.5 [181]

1376 J Solid State Electrochem (2008) 12:1367–1391



decrease in the polarization resistance without any visible
interaction with zirconia [194]. However, the electrode–
electrolyte interaction may still have a crucial importance.
As an example, the area-specific resistivity of porous La2
Ni0:9Co0:1O4þd was found lower in contact with La0:9Sr0:1
Ga0:8Mg0:2O3�d electrolyte compared to Ce0:9Gd0:1O2�d at
773–1073 K [198]; long-term annealing of both cells at
1273 K results in the separation of secondary phases, La3Ni2O7

and La2O3, due to nickel diffusion into the electrolyte ceram-
ics. Opposite results were reported for Ln;Ndð Þ2NiO4þd in
contact with LSGM, where the poor electrochemical perfor-
mance in comparison with samaria-doped ceria was attributed
to the materials reactivity [199]. Whatever the phase interaction
kinetics, the incorporation of doped ceria components into
nickelate electrodes and the formation of ceria interlayers de-
crease cathodic polarization, as for many other oxide electrodes
in the intermediate-temperature range [199, 200].

The ternary and quaternary Cu-containing oxide systems
display several distinctive features relevant for the SOFC
developments (e.g., [23, 25, 201–205] and references there-
in). First, relatively low melting points characteristic of all
these systems may limit the cell fabrication and operation
temperatures and lead to a fast electrode sintering and mi-
crostructural degradation at 1050–1200 K. This makes it
possible to use minor additions of Cu-containing sintering
aids or cathode materials where Cu2+ cations are incorporat-
ed in the lattice [25, 30, 50, 159, 180, 188, 196], but may
hamper application of cuprate-based electrodes. Second, no
perovskite-type compounds exist in the Ln–A–Cu–O sys-
tems at oxygen pressures close to atmospheric and SOFC
operation temperatures; the solubility of Cu2+ in most perovs-
kite phases is usually low, ≤30%. In spite of complex phase
relationships and rich crystal chemistry in the cuprate materials,
the number of high-conductivity compositions stable under the
IT SOFC cathodic conditions is not very large, including
primarily K2NiF4-type Ln;Að Þ2CuO4�d (Ln = La−Sm; Ln =
Sr, Ba) and various derivatives of layered LnA2Cu3O7�d

formed in the systems with Y3+ and smallest lanthanide ca-
tions. As for perovskites, the thermodynamic and thermal
stability of Ln2CuO4þd decreases with decreasing Ln

3+ radius;
the dopant solubility in both sublattices is quite similar to that
of Ln2NiO4þd [23, 201–203, 206–208]. The total conductivity
of La2CuO4þd, which exhibits a small oxygen excess in air,
has pseudometallic character (Fig. 1) and is considerably
lower than that of lanthanum nickelate [23, 25, 188]. Again,
moderate acceptor-type doping enhances the p-type electronic
transport, whereas decreasing Ln3+ size has an opposite effect.
The oxygen diffusion and surface exchange in all cuprates are
rather slow and tend to decrease when the Ln3+ radius de-
creases [188, 192, 208–213]. In the case of La2�xSrxCuO4�d,
the ion diffusivity becomes slightly higher on modest Sr
doping (x<0.1) and drops with further additions; the sub-
stitution of copper with higher-valence cations has often

positive impact on the ionic transport, thus indicating
relevance of both vacancy and interstitial migration mecha-
nisms. Note that increasing oxygen content in another well-
known cuprate, YBa2Cu3O7�d, also results in higher oxygen
permeability and ionic conductivity [212].

Most layered cuprates are thermomechanically compatible
with solid oxide electrolyte ceramics (Table 4). Nonetheless,
the performance of cuprate cathodes is usually worse com-
pared to their nickelate analogues (e.g., [214, 215]). This is
associated, first of all, with lower ionic and electronic tran-
sport and with poorer stability. The latter factor promotes
interaction with solid electrolytes, especially when a liquid
phase is formed during fabrication; in addition, an acceler-
ated degradation due to progressive sintering under operating
conditions may take place. The potential applications include,
hence, IT SOFC where the maximum operation temperature is
limited to 950–1050 K, provided a deep optimization of the cell
processing conditions. For example, thick diffusion layers
consisting of SrZrO3 and La2Zr2O7 were found to form at the
interface between La1.9Sr0.1CuO4 and YSZ after firing at
1373 K, deteriorating electrochemical properties [215]. On the
contrary, a low polarization resistance, 0.16 Ω cm2 at 973 K
and 1.2 Ω cm2 at 773 K in air, was reported for La1:7
Sr0:3CuO4�d cathodes sintered onto CGO at 1170 K [216].

Composite cathodes: selected aspects

The key directions in the IT SOFC developments relate to
multiphase composite electrodes comprising, at least, one
electronically conducting material and a solid electrolyte
component. The advantages of this approach were demon-
strated for all types of the parent cathode compositions [61–
66, 200, 217–223]. The introduction of the solid electrolyte
component provides a substantial enlargement of the
electrochemical reaction zone, enhances the electrode
microstructural stability and adherence to the electrolyte,
enables to adjust TECs, and mitigates strains caused by the
electrode chemical expansion induced by overpotential varia-
tions. Further improvements can be achieved via the incorpo-
ration of nanocrystalline catalyst particles onto the electrode
and electrolyte surfaces and into pores, by the creation of
compositional, particle size and porosity gradients, and using
various chemical treatments modifying the surface compo-
sition and increasing connectivity of the constituent particles.
One should mention, however, that an extensive use of nano-
scale engineering methods may lead to instabilities even in
the intermediate-temperature range (e.g., [221–223] and
references cited), thus making it necessary to include long-
term testing in the standard procedures for IT SOFC elect-
rode characterization.

Figure 10 illustrates typical trends observed for the dual-
phase composite cathodes. The general tendencies are in
agreement with theoretical calculations using a random
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resistor networks model [224], predicting minimum Rh for
30–60 vol.% fraction of the electronically conducting phase;
further IC additions result in a drastic rise of the ohmic re-
sistance and in the electronic transport limitations to elec-
trochemical kinetics. However, there exist additional factors
affecting the composite performance, primarily the compo-
nents interaction, grain-boundary resistivity phenomena, and
possible alterations in the reaction mechanisms (e.g., [225–
229]); precise separation of the corresponding contributions
to the overall electrode resistance is usually impossible. For
instance, the better performance of ceria-containing compo-
sites in comparison with LSM–YSZ (Fig. 10) results from
both an absence of ion-blocking layers and the higher ionic
conductivity of doped ceria.

Finally, while the formation of composite cathodes is the
only viable way to use cobaltite- and ferrite-based materials
having excessively high TECs (Table 2), such composites
provide superior electrochemical activity as the role of
catalytically active electronic conductor remains important
due to critical effects of the reaction zone width in the
vicinity of triple-phase boundaries (TPBs) and to correlations
between oxygen exchange and ion diffusion. As an example,
the polarization resistance of La0:6Sr0:4Co0:2Fe0:8O3�d �
Ce0:8Gd0:2O2�d (50–50 vol.%) was reported as low as 0.33
and 0.01 Ω cm2 at 873 and 1023 K, respectively [230]. The
La0:6Sr0:4Co0:8Fe0:2O3�d � Ce0:8Gd0:2O2�d (70–30 wt.%)
composite applied onto Ce0:8Sm0:2O2�d with subsequent
deposition of metallic Ag, showed Rh lower than 1 Ω cm2 at
873 K [231]; the polarization resistance of Sm0:5Sr0:5
CoO3�d � Ce0:9Sm0:1O2�djCe0:9Gd0:1O2�d half cells was
approximately 0.4 Ω cm2 at 973 K [232]. Even moderate
(10 wt.%) Ce0:8Sm0:2O2�d additions into Sm0:5Sr0:5CoO3�d

cathode deposited onto Ce0:8Sm0:2O2�d electrolyte had a
dramatic effect on the polarization; the minimum Rh value,
<0.18 Ω cm2 at 873 K, was found for 30 wt.% Ce0:8
Sm0:2O2�d [219].

Anodes

Conventional cermets

The ceramic–metal composites (cermets) containing YSZ and
Ni, where the metallic phase acts as electronic conductor and
catalyst, are the common SOFC anode materials up to now
[1–5, 19–21, 233–236]. As for the oxide composite electro-
des, zirconia additives have a number of important functions
listed above and are necessary to achieve sufficient power
density and durability, particularly to adjust thermal expan-
sion (Table 5). Again, since the composite layers should
provide percolation paths for electrons, oxygen ions, and
gas, the cermet performance is strongly dependent on the
microstructure-related factors, including processing condi-
tions and pre-history; this leads often to discrepancies in the
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Table 5 Average thermal expansion coefficients of selected SOFC
anode materials and their components

Composition T, K a � 106, K−1
Ref.

Ni – 16.5 [248]
Zr0.85Y0.15O2 303–1273 10.9 [306]
Zr0.85Y0.15O2 323–1273 10.3 [368]
Ni–Zr0.85Y0.15O2 (40–60 vol.%) 303–1273 12.6 [306]
Zr0.94Y0.06O2 298–1273 10.5 [248]
Ni–Zr0.94Y0.06O2 (30–70 vol.%) 298–1273 12.7 [248]
Ni–Zr0.94Y0.06O2 (40–60 vol.%) 298–1273 13.1 [248]
Ni–Zr0.94Y0.06O2 (45–55 vol.%) 298–1273 13.3 [248]
La0.9Sr0.1CrO3 303–1273 10.7 [306]
La0.79Sr0.20CrO3 623–1273 11.1 [306]
La0.7Ca0.3Cr0.5Ti0.5O3 303–1273 10.1 [306]
La0.7Sr0.3Cr0.8Ti0.2O3 303–1273 10.7 [306]
La0:75Sr0:25ð Þ0:95Cr0:5Mn0:5O3�d 373–923 10.8 [310]

923–1223 12.7
1223–1523 14.1
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literature data. One standard approach to minimize the
interfacial resistance of Ni–YSZ anodes relates to increasing
TPB length [237]. This can be achieved, in particular, using
small Ni particles and high YSZ to Ni particle ratio (Fig. 11).
For example, a mixture of fine and coarse YSZ particles was
suggested [238] to tune the microstructure and properties of
the cermets. On the other hand, a significant improvement
was observed when fabricating the anodes from mechani-
cally processed powder, with a resultant microstructure
comprising submicron Ni and YSZ particles and uniformly
distributed micron-sized pores [239]. A variety of graded
functional layers enhancing the SOFC performance are also
known, although the approaches to their architectural and
morphological optimization are different and, often, contra-
dictory (e.g., [240–242] and references cited). Hence,
attention is centered on theoretical modeling of the porous
cermets in order to formulate guidelines for the anode
design. The simulation methods can be classified according
to the type of system representation [243]; particular cases
include the use of macroscopic averaged descriptions of
disordered electrode structure, modeling of the anode
material corrugated layers covered by a thin electrolyte film
or vice versa (thin film models), and simulating random
packing of particles (Monte Carlo calculations). One
important conclusion was drawn from the impedance
network modeling [244], which showed that the electrode
response may be more complex than that for a single
interface; distortions of the impedance spectra and/or extra
arcs appear when the system is close to or below the
percolation threshold for electronic conduction. Ascribing
the electrode signal elements visible in the Nyquist plots to
any definite steps of the electrochemical process [245] may
thus be questionable. For the cermets where components

have similar grain sizes, the percolation threshold is expected
to correspond to approximately 30 vol.% metallic phase
[246]. This estimation agrees with experiments (Fig. 12), but
a substantial scatter is always observed due to micro-
structural differences. The electrical conductivity of porous
Ni–YSZ composites in hydrogen was reported to exhibit a
semiconductor-like behavior up to 30 vol.% Ni and to
become metallic when Ni fraction increases to 50% [247],
while other authors [248, 249] observed metallic behavior
even for the compositions containing 20–30 vol.% Ni. The
use of combustion synthesis [249] and Ni-coated graphite
particulates [250] enabled to alter the electrical properties in
the vicinity of nickel percolation limit, increasing the con-
ductivity of zirconia-rich materials. The YSZ fraction
optimum for electrochemical performance is also dependent
on the anode processing conditions and varies usually in the
range of 30–60 vol.% (Fig. 13). For instance, minimum
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polarization resistance at 1273 K was found for 60 vol.%
YSZ, whereas the ohmic resistivity decreased with Ni addi-
tions as expected [251].

At elevated temperatures, the microstructure and properties
of Ni–YSZ cermets with high nickel content undergo fast
degradation due to coarsening of the metal particles. Another
factor making it necessary to decrease metal concentration in
the cermets is the stability to redox cycling which may cause
microstructural reconstruction, strains and failure, accompa-
nied with rising overpotentials. As an example, 33% decrease
in the conductivity measured at 298 K was revealed for
reduced 56 wt.%NiO–YSZ after an exposure at 1273 K in 3%
H2–H2O–Ar for 4,000 h [252]. The rate of increasing
overpotential of Ni� Zr0:85Y0:15O2�d (51–49 vol.% or
67 wt.% NiO) in 50%H2–N2 atmosphere at 1200–1280 K
and 300 mA/cm2 was as high as 14 μV/h [253]; the
polarization of Ni–YSZ (65–35 mol%) anode at 1223 K
increased by 18% after triple redox cycling [254]. Such
problems are typical, to a different extent, for all cermet
electrodes; although the redox stability of noble metal-
containing composites is much better, these are excluded
from consideration in this review as their wide application is
unlikely due to economic reasons. Taking into account the
durability issues related to carbon deposition and sulfur
poisoning, continuous efforts are being made since the 1970s
to develop optimized anode formulations, particularly via the
use of other transition-metal components [1, 6, 19, 27, 30,
255–263]. The copper-based anodes, which may be of
interest for hydrocarbon-fueled SOFCs in combination with
ceria catalysts due to low Cu activity towards C–C bond
formation, exhibit however poor electrochemical properties;
the introduction of Fe and Co also leads to serious drawbacks
associated primarily with the metal oxidation under high cur-
rent densities. In terms of phase interaction with the fluorite-
type solid electrolytes, most transition metal-based cermets
exhibit quite similar behavior, at least at temperatures above
1000 K (e.g., [30, 158] and references cited). A considerably
higher reactivity with cermets is known for the gallate elec-
trolytes where the reaction layers do not display a critical
increase of the n-type electronic conductivity in reducing
conditions, but may partly block ion transfer and should be
avoided via the deposition of buffer sub-layers, such as doped
ceria [104, 186, 264–268]. The relatively poor electrochem-
ical performance of Ni-containing cermets in contact with
apatite-type silicate electrolytes [269] may also originate
from the materials interaction, including silica diffusion
[270], though information on the relevant mechanisms is still
very scarce. Another approach for the cermet optimization is
to increase n-type electronic conduction in the ZrO2-based
components by doping and, thus, to expand the anodic
reaction zone [263, 271–274]. However, the incorporation of
cations forming redox couples under anodic conditions, such
as Ce3+/4+, Ti3+/4+, or Nb4+/5+, leads to decreasing ionic con-

duction in the cubic zirconia [30]; the cumulative effects of
such modifications on the anode polarization are rather neg-
ligible. Nevertheless, Ti doping makes it possible to improve
mechanical stability of the cermets [263, 271].

Ceria-based anode materials

Since the first attempts to use ceria for the SOFC anodes in the
1960s [18, 19, 30, 275], introducing CeO2�d-based additives
and layers is widely considered among the most promising
directions in the anode developments [6, 9, 11, 17, 235, 259,
265, 276–282]. The advantages are associated, first of all,
with a very high catalytic activity of ceria to the combustion
reactions involving oxygen, particularly to carbon oxidation
beneficial for the fuel cells operating on hydrocarbons and
biogas. In addition, reduced CeO2�d and its derivatives pos-
sess a substantial mixed oxygen ionic and n-type electronic
conductivity; the transport properties and reducibility can be
enhanced by acceptor-type doping [17, 158], which clearly
has a positive impact on the electrode performance (Fig. 14).
For example, maximum power density for Ce1�xSmxO2�d

(x=0–0.4) anodes in contact with YSZ electrolyte at 1073–
1273 K in humidified H2 was found for the composition
with x=0.2 [283]. On the other hand, although no carbon
deposition was detected on Ce0:6Gd0:4O2�d electrode after
testing for 1,000 h at 1273 K and steam to carbon ratio of
0.3, the electrocatalytic activity of gadolinia-doped ceria
without extra additives was revealed insufficient to provide
direct CH4 oxidation [277]. Note that the electronic con-
duction in ceria solid solutions is also lower than necessary
to avoid critical ohmic losses and/or current constriction
effects on the overall anodic polarization, thus requiring to
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introduce an additional metal component. Figure 15 presents
selected data on the performance of YSZ- and (Ce,Sm)O2-
based anodes.

Comparative tests of the electrode layers containing
nickel and various mixed-conducting components showed
that the cermets with Nd Cað ÞGa Co;Mgð ÞO3�d perovskites
or Gd2Ti2O7�d pyrochlore perform substantially worse than
those with ceria [284]; the overpotentials of 95 wt.% Ni–
5 wt.% Ce0:8Ln0:2O2�d (Ln = Sm, Gd) anodes in contact
with LSGM were slightly lower for Ln = Sm. Qualitatively
similar conclusions on the role of ceria-based additives were
drawn [259, 285] studying three-phase cermets with Ni, Cu,
YSZ, CGO, and other mixed conductors, including fluorite-
related TbZrO4�d [286], zircon-type Ce0:8Ca0:2VO4þd [287],
Gd1:86Ca0:14Ti2O7�d pyrochlore [288], and perovskite La0:9
Sr0:1Al0:65Mg0:15Fe0:20O3�d [89], and also by testing CH4

oxidation over the catalysts comprising Cu, bimetallic Cu–
Ni, and Ce Lnð ÞO2�d where Ln = Gd or Tb [289]. However,
as Ni-ceria cermets suffer from the dimensional instabilities
caused by the local p(O2) variations and minor TEC mis-
match, the presence of one redox-stable phase with moderate
thermal expansion, such as YSZ, is desirable to avoid the
resultant increase of anodic polarization (inset in Fig. 14).
The impact of ceria-based components increases with
decreasing temperature [285] and becomes crucial under
the IT SOFC operation conditions. An additional improve-
ment can be achieved by the infiltration of nanocrystalline
ceria onto the cermet anode surface (Fig. 16), enabling to
enhance exchange rates for both solid electrolyte and elec-
trode, to enlarge TPB and electrode surface area, to provide
better contacts between the component particles, and even to
increase tolerance towards sulfur poisoning [30, 259, 281,
285]. The effects of Ce3+ or Ce4+ presence in other oxide
phases incorporated in the anode compositions, if any, are
still not obvious. As an example, appraisal of Zr0:57Y0:15

Ce0:15Ti0:13O2�d as an alternative anode material and as a
component of Ni- and Cu-containing cermets demonstrated
inferior electrochemical activity with respect to conventional
Ni–YSZ [263]. Among the former cermets, the best per-
formance at 773 K was observed for the electrode obtained
by reduction of CuO� Zr0:57Y0:15Ce0:15Ti0:13O2�d (60–
40 wt.%); heating above 873 K resulted in microstructural
degradation [263]. In the case of CeVO4-based additives, an
alteration of electrocatalytic properties of the composite
electrodes cannot be excluded, but the polarization was
relatively high due to fast interaction between the cell
materials [259].

Alternative oxide compositions and cermet components

The continuous search for alternative anode materials is
primarily centered on perovskite-related structures, which are
more tolerant to extensive cation substitution and possess
better transport properties with respect to other families, such
as spinels, fluorites, pyrochlores, C-type oxides, or garnets
(e.g., [27, 71, 290–292]). Inspection of the low-p(O2) sta-
bility limits of the perovskite-related phases with a high
electronic conduction and sufficient stability in oxidizing
atmospheres as necessary for the fabrication and durable
operation of SOFCs (Fig. 17) shows, however, that cobaltite-,
manganite-, and ferrite-based compounds cannot be thermo-
dynamically stable under anodic conditions. A variety of
other compounds, such as rare-earth vanadates and molyb-
dates, display attractive properties in reducing environments,
but undergo phase changes leading to the formation of low-
conductivity materials on oxidation [25, 287, 291–293]. The
number of ternary oxide compounds which can be used as
parent compositions for the anode developments is thus
essentially limited, particularly to those in Cr- and Ti-
containing systems.

One of the most known parent materials, LaCrO3, is quite
inert for the reactions associated with reforming and carbon
deposition [294–298]. As for many other perovskites, the
dominant p-type electronic conductivity and electrocatalytic
activity of lanthanum chromite can be enhanced by the
substitution of La3+ with alkaline-earth cations. At temper-
atures above 770 K, the methane oxidation and surface
dissociation occur over La;Að ÞCrO3�d (A = Ca, Sr) anodes
without significant coking [276, 298, 299], suggesting pos-
sible applications in hydrocarbon-fueled SOFCs. The elec-
trochemical properties of chromites are however poor, a
result of slow surface exchange, low total and ionic con-
ductivities under anodic conditions, and often, weak adher-
ence to the solid electrolyte ceramics. Very high polarization
resistances are typical for most chromite-based composi-
tions, in particular La1�xSrxCrO3�d (x=0.2–0.3) and their
derivatives, both in H2–H2O and CH4–H2O atmospheres
even at elevated temperatures [23, 25, 298, 300–302]. The
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only known exceptions are related to the multiphase anodes
where a highly dispersed catalyst is supported on porous
chromite surface; examples include bimetallic Pd–Ni [303],
or nickel formed on reduction of 10% Ni-substituted
chromite solid solution [296]. Again, the overpotentials can
be drastically decreased incorporating ceria additives. In the
case of composite anodes obtained by reduction of La0:8
Sr0:2Cr0:98V0:02O3�d, Ce0:9Gd0:1O2�d, and NiO (47.5:47.5:
5 wt.%) in contact with Ce0:9Gd0:1O2�d electrolyte, the
polarization resistance at 1023 K was as low as ∼0.8 Ω cm2

at 450 mV cell voltage and 0.1 Ω cm2 under open-circuit
conditions [304]. At the same time, systematic studies of
La1�xAxCr1�yMyO3�d (M = Mg, Ti, Fe, V, Nb) perovskites
[23, 295–299, 302, 305] did not reveal compositional do-
mains with an appropriate combination of electrical, phys-
icochemical, and catalytic properties, enabling to develop
single-phase anode materials. For instance, the Cr-rich solid
solutions possess a low electronic transport at reduced p(O2);
the iron-containing materials suffer from an excessive chem-

ically induced expansion and phase decomposition under
anodic conditions, often stagnated owing to kinetic reasons
[305]. As volume expansion on reduction may be suppressed
by Ti doping [306], attention was attracted to La;Að Þ Cr;Tið Þ
O3�d electrodes, but their electrochemical performance is
also insufficient for practical use [302].

On the contrary, promising properties were reported for
perovskite-like La1�xSrxCr1�yMnyO3�d (x=0.2–0.3; y≤0.5)
and Sr2MoMg1�xMnxO6�d [291, 307–309], where the
stabilization of oxygen-deficient lattices at low p(O2) becomes
possible due to the presence of higher-valence cations retain-
ing the neighboring oxygen polyhedra, while Mg2+ and Mn2+

cations are stable in both octahedral and tetrahedral coordina-
tion. Serious advantages of the former family (LSCM) include
a substantial electrochemical activity in reducing and oxidiz-
ing atmospheres, compatibility with various solid electrolytes,
and a good dimensional stability despite phase changes on
reduction [307–316]. As an example, porous La0:75Sr0:25
Cr0:5Mn0:5O3�d layers deposited onto YSZ and covered with
Au paste and mesh, show anodic polarization resistances of
0.90 Ω cm2 in diluted H2 and 0.47 Ω cm2 in wet 100% H2 at
1198 K [307]. Low overpotentials were also observed for
La0:75Sr0:25ð Þ1�xCr0:5Mn0:5O3�d (x=0–0.05) applied onto
LSGM [312, 313, 315], and for La0.8Sr0.2Cr0.8Mn0.2O3−δ–
Ni–Ce0.9Gd0.1O2−δ cermets in contact with CGO [308].
Although a poor adherence was obtained for La0:75Sr0:25
Cr0:5Mn0:5O3�d deposited onto zirconia, the electrochemical
performance and adhesion both can be improved by YSZ
additions [314], which also enhance ionic conduction in the
anode materials. The ionic transport in LSCM is very low, in
spite of the oxygen vacancy formation under reducing con-
ditions (Fig. 18); consequently, CeO2- and ZrO2-based
additives and interlayers decrease electrode polarization [307,
315–317]. The most crucial factor, relevant also for the
majority of chromite- and titanate-based anodes, is however a
relatively low electronic conduction. The total conductivity of
LSCM lies in the range 20–40 S/cm and is essentially p(O2)-
independent in oxidizing and moderately reducing atmos-
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pheres at 1000–1250 K, but decreases down to 1–5 S/cm on
reduction [307, 308, 310, 311]. Note that the current-
constriction effects on electrode polarization, discussed in the
first part of this review, are significant even for LSM where
the conductivity is higher than 100 S/cm [318]. For model
cells, the limiting effects of electronic transport can be avoided
using specific current collectors, such as Au paste and mesh
[307, 312, 313] or Ag paint [308]. This approach cannot be,
however, used in real SOFCs; the practical current collectors
made of stainless steels or LaCrO3-based ceramics possess
considerably higher contact and/or bulk resistances compared
to the noble metals. The electronic transport limitations make
it necessary to use LSCM in combination with metal
additives, such as Ni or Cu [310, 315, 317], and to consider
these phases among other promising components of the anode
cermets.

Similar problems can be expected for Sr2Mo Mg;Mnð ÞO6�d

having a slightly higher total conductivity and, possibly, in-
sufficient phase stability in reducing environments [291, 309,
319]. In the intermediate-temperature range, Sr2MoMgO6�d

may also suffer from the interaction with water vapor, SOx or
CO2, as typical for the perovskites with large fractions of
alkaline-earth cations in both sublattices (e.g., [320, 321]).
Information on the behavior of LSCM and Sr2MoMg1�x

MnxO6�d anodes in sulfur-containing atmospheres is still
scarce [291, 316], though the latter system may be advanta-
geous due to the catalytic activity of molybdenum species
towards H2S oxidation [322].

A higher n-type electronic conduction under reducing
conditions is known for perovskite-related titanates [25, 27,
293, 297, 302, 323, 324]. However, the crystal and defect
structure and transport properties of most conducting titanates
stable in moderately reducing atmospheres tend to have an
irreversible degradation on oxidation [323]. To some extent,
this can be avoided by compositional optimization. For
instance, the conductivity of 82 S/cm at 1073 K and p(O2)≈
10−19 atm, structural stability over a wide range of temper-
atures and oxygen pressures, and thermal expansion compat-
ible with solid oxide electrolytes were reported for Sr0:86
Y0:08TiO3�d [324]. The typical polarization resistance, for
La2Sr4Ti6O19 anodes at 1173 K, is 3.0 and 8.9 Ω cm2 in wet
H2 and CH4, respectively [325]. Such performance is yet
insufficient, but enables to use titanate materials in the cermets.

Surface modification of solid electrolytes and electrodes

Regardless of the performance-determining role of electrode
materials, the polarization losses in SOFCs can be signifi-
cantly reduced altering composition and morphology of the
solid electrolyte surface [13, 19–22, 326–335]. The exchange
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currents may be increased via the incorporation of variable-
valence dopants with a high catalytic activity (Fig. 19),
which participate in the electrode reaction, and via various
chemical and physical treatments of the electrolyte surface in
order to enhance specific area and electrode adhesion, to
increase TPB length, and/or to remove ion transfer-blocking
phases from the interface. Typical dopants include Ce, Ti,
Mo, or Ni for the anode surface and Pr, Mn, Fe, or Co for the
cathode; the relevant mechanisms are related to a local
increase of the electronic transport, creation of the catalytic
centers, inhibition of the blocking layer formation between
the electrolyte and perovskite electrode, reducing grain-
boundary resistance at the electrolyte surface, and scaveng-
ing of siliceous impurities [56, 326–328, 332, 333, 336–341].
The doping strategies should, however, account for
possible diffusion into the electrolyte bulk and for redox
changes in the surface layers during the cell operation in
order to avoid excessive leakage currents and mechanical
strains, which become critical in the IT SOFCs with thick
film electrolytes. For the removal of siliceous phases from

the electrolyte surface, chemical etching is usually consid-
ered as more effective and simpler method (e.g., [331]).
Moreover, although the positive effects of surface doping
with iron may partly result from the impurity-scavenging
phenomena [340], data on the electrochemical behavior of
Fe-doped YSZ ceramics and single crystals ([30, 328, 333,
337, 342] and references cited) require additional studies. In
particular, the implantation of Fe3+ in the zirconia surface
layer (∼30 nm) has no essential influence on the oxygen
reduction mechanisms, but leads to ten to 50 times higher
exchange currents of porous Au electrodes at 770–1070 K
[328, 337]; further heating causes iron dissolution in the
YSZ bulk. Qualitatively similar improvements were
achieved by forming cathodic sub-layers enriched with Pr
or Mn, and by incorporating Ce or Ni in the anodic sub-
layers, with the insertion depths varying from nano-scale up
to a few microns [119, 326, 332, 333, 336]. It should be
mentioned that Mn doping enables also to suppress zirconate
formation at the LSM|YSZ interfaces [56], as for the use of
Ln-site-deficient manganites. On the other hand, massive
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diffusion of the transition metal cations decreases ionic con-
ductivity in most solid electrolytes, including ZrO2-, CeO2-,
LaGaO3-, Bi2O3-, and La10Si6O27-based materials [32, 90,
158, 167, 186, 266, 343, 344]. This factor and the changes in
electrode kinetics observed when the electrolyte surface layers
contain large amounts of the variable-valence species (e.g.,
[259, 270, 310]) make it necessary to carefully control cation
diffusion into solid electrolyte in the course of fuel cell fab-
rication if even no blocking interfacial layers can be formed.

The performance of SOFC electrodes can also be increased
applying highly dispersed catalysts onto their surface, though
the resultant effects cannot be usually separated from those
associated with other factors, such as catalyst deposition onto
the electrolyte and in the vicinity of TPB, increasing specific
surface area, or reducing contact resistance and current-
constriction effects. The catalytically active agents include,
first of all, submicron- or nano-sized noble metal particles
effective for most oxide and cermet electrodes [50, 122, 214,
283, 323, 345, 346]. Several examples illustrating the in-
fluence of silver additions, either introduced into the cathode
composition prior to sintering or infiltrated into sintered
porous layers via the impregnation with Ag-containing
solutions, are given in Figs. 8a, 20, and 21. Note that, despite
relatively high costs and potential instabilities [346, 347],
silver incorporation is widely assessed for the IT SOFC
electrodes [131, 270, 346, 348–353]; as a rule, the impacts
are positive, though the electrochemical behavior is strongly
dependent on the processing conditions governing Ag
distribution in the porous electrodes and at the interface.
For example, no essential catalytic effect was observed when
introducing 0.1–2.0 wt.% Ag in La0.65Sr0.3MnO3 cathodes
synthesized by the Pechini method [349], in contradiction
with other data [50, 119, 270, 310, 346]. Analogous
discrepancies are well known for most catalysts where the
activity is determined by submicron-scale morphology. In
the case of minor additions of metallic nickel, significantly
lower polarization was found for the anodes made of mixed-
conducting Ce0:6Gd0:4O2�d, Ti0:22Y0:16Zr0:92O2�d, La0:75
Sr0:25Cr0:97V0:03O3�d, and La0:75Sr0:25ð Þ0:95Cr0:5Mn0:5O3�d,
and also for cermet 40 vol.% Ni–60% Ce0:9Gd0:1O2�d [310,
354]; the polarization resistance of Ni–Zr0.92Y0.16O1.92 (40–
60 vol.%) remained almost unchanged [354]. This type of
behavior requires a careful analysis of all possible contribu-
tions to the electrode kinetics when using metal-containing
pastes for current collection in the model cells with oxide
electrodes, even in the case of gold. Taking into account the
high catalytic activity of highly dispersed Au particles
stabilized on oxide supports (e.g., [355, 356] and references
cited), the effects of metal spreading into the porous elec-
trode bulk cannot be a priori neglected.

The oxide-activating agents that can be applied onto the
electrode surface in order to improve exchange kinetics are
similar to those effective for the electrolyte surface doping and

for engineering of the nanostructured composite electrodes,
briefly discussed above. In particular, the typical electro-
catalysts used since the 1960s [18, 19, 30, 343] are praseo-
dymium oxide under oxidizing conditions (Figs. 8, 20, and
21) and ceria in reducing environments (Fig. 16). Another
well-known approach is based on the deposition of oxide
compositions, which have fast oxygen exchange rates and a
limited compatibility with solid oxide electrolytes, onto a
stable porous electrode matrix. For instance, the polarization
resistance of LSM cathodes can be substantially decreased
via the infiltration or screen-printing of perovskite-type
Ln; Srð ÞCoO3�d [357, 358]. As for the optimized composite
electrodes, an increase in the electrochemical activity is often
observed when applying nano-sized particles of ionic con-
ductors, such as doped ceria and even YSZ [62, 279]; again,
however, the nature of such phenomena is complex and may
hardly be ascribed to any single stage of the electrode processes.
Furthermore, while the use of nanocrystalline components
offers serious advantages due to a reduced defect-formation
energy and enlarged surface area [359–361], the pronounced
tendencies to aggregation, passivation, and materials interac-
tion characteristic of the nanostructured electrodes lead to
another kind of limitations related not only to the maximum
operation temperature, but also to uniform current and heat
distribution in the solid oxide fuel cells.
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